A General Feed-Forward Algorithm for Gradient Descent in Connectionist Networks

نویسندگان

  • Sebastian Thrun
  • Frank Smieja
چکیده

An extended feed-forward algorithm for recurrent connectionist networks is presented. This algorithm, which works locally in time, is derived both for discrete-in-time networks and for continuous networks. Several standard gradient descent algorithms for connectionist networks (e.g. [48], [30], [28] [15], [34]), especially the backpropagation algorithm [36], are mathematically derived as a special case of this general algorithm. The learning algorithm presented in this paper is a superset of gradient descent learning algorithms for multilayer networks, recurrent networks and time-delay networks that allows any combinations of their components. In addition, the paper presents feed-forward approximation procedures for initial activations and external input values. The former one is used for optimizing starting values of the so-called context nodes, the latter one turned out to be very useful for nding spurious input attractors of a trained connectionist network. Finally, we compare time, processor and space complexities of this algorithm with backpropagation for an unfolded-in-time network and present some simulation results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Handwritten Character Recognition using Modified Gradient Descent Technique of Neural Networks and Representation of Conjugate Descent for Training Patterns

The purpose of this study is to analyze the performance of Back propagation algorithm with changing training patterns and the second momentum term in feed forward neural networks. This analysis is conducted on 250 different words of three small letters from the English alphabet. These words are presented to two vertical segmentation programs which are designed in MATLAB and based on portions (1...

متن کامل

Solving Fuzzy Equations Using Neural Nets with a New Learning Algorithm

Artificial neural networks have the advantages such as learning, adaptation, fault-tolerance, parallelism and generalization. This paper mainly intends to offer a novel method for finding a solution of a fuzzy equation that supposedly has a real solution. For this scope, we applied an architecture of fuzzy neural networks such that the corresponding connection weights are real numbers. The ...

متن کامل

Solving Fuzzy Equations Using Neural Nets with a New Learning Algorithm

Artificial neural networks have the advantages such as learning, adaptation, fault-tolerance, parallelism and generalization. This paper mainly intends to offer a novel method for finding a solution of a fuzzy equation that supposedly has a real solution. For this scope, we applied an architecture of fuzzy neural networks such that the corresponding connection weights are real numbers. The ...

متن کامل

Training neural networks with ant colony optimization algorithms for pattern classification

Feed-forward neural networks are commonly used for pattern classification. The classification accuracy of feed-forward neural networks depends on the configuration selected and the training process. Once the architecture of the network is decided, training algorithms, usually gradient descent techniques, are used to determine the connection weights of the feed-forward neural network. However, g...

متن کامل

Utilizing a new feed-back fuzzy neural network for solving a system of fuzzy equations

This paper intends to offer a new iterative method based on articial neural networks for finding solution of a fuzzy equations system. Our proposed fuzzied neural network is a ve-layer feedback neural network that corresponding connection weights to output layer are fuzzy numbers. This architecture of articial neural networks, can get a real input vector and calculates its corresponding fuzzy o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1990